Crossnumbers

Quarterly

Open Up Special 2020

© crossnumbersquarterly.com

Petit Neuf by Zag

This puzzle uses all of the digits from 1 to 9 inclusive. Entries include precisely

- One square
- One cube
- Two primes
- Two Fibonacci numbers

1		2
3	4	
5		

Recycling by Oyler

No entry starts with zero and all are distinct. Factors and multiples are non-trivial.

1		2		3	
4	5	6	7		
8		9		10	11
	12	13	14	15	
16	17			18	19
20		21			

Across

1 (3ac + 17dn) x (19dn-3dn)
3 product of 3 distinct primes
4 square-14dn
6 product of 5 distinct primes
8 multiple of 11 dn
95 x prime
125 dn - ($21 \mathrm{ac} /(17 \mathrm{dn}$ - 3ac))
15 triangular
$163 a c+6 a c-15 a c-10 d n$
18 8ac + 15ac
$202 \times 3 \mathrm{ac}$
$213 \mathrm{ac} \times 4 \mathrm{ac}$ - (15 ac - 11dn)

Down

1 square
2 multiple of ($8 \mathrm{ac}-3 \mathrm{ac}$)
3 prime
5 prime
7 triangular
8 multiple of 3dn
10 square
11 prime
133 x square
14 square
17 factor of 19 dn
$194 a c+11 d n$

Sequence by Czecker

A and B are the first two terms in a sequence, where each term is the sum of the two previous terms, like the Fibonacci sequence. For example if A and B were 5 and 2 then the sequence would start $5,2,7,9,16,25,41 \ldots .$. No entry starts with zero and all entries are distinct.

Eight terms of the sequence, including A and B, are entries in the grid. The exceptions are
2dn : power of a prime
3dn : square

1	2	3	
4			5
6			
7		8	

Major Suits by Nod

The major suits (Hearts \& Spades) of a standard pack of cards have been laid out in the grid, one to each cell.

Each card's value equals its face value (with $\mathrm{A}=\mathrm{Ace}=1, \ldots, \mathrm{~T}=\mathrm{Ten}=10, \mathrm{~J}=\mathrm{Jack}=11, \mathrm{Q}=$ Queen $=12$ and $K=$ King = 13) plus its suit value. Suit values are $H=$ Hearts $=10$ and $\mathrm{S}=$ Spades $=23$. This gives each card a unique value between 11 and 36 inclusive which is entered into its cell. Clues either refer to the value of the entry or the cards in the cells. Picture cards are J, Q and K.

The numbers in the completed grid should be converted back to show the cards.

Across

1 Square
3 Same suit
5 Sum of face values = 5
6 Cube
7 Triangular
9 Same suit
11 Same suit
13 Triangular
15 Cube
17 Sum of face values = 12
18 Same suit
19 Square

Down

1 Sum of face values = 11
2 Unclued
3 Square
4 Both picture cards
5 Unclued
8 Sum of face values = 19
10 Square
12 Same suit
14 Sum of face values = 9
16 Different suits

Solutions to Open Up Special

Petit Neuf by Zag

There are 6 clue types so no number can do double duty such as 13 (prime \& Fibonacci) and no answer can have duplicate digits. The possible Fibonacci numbers are $21,34,987.21 \& 34$ cannot appear together so the two Fibonacci numbers are either $21 \& 987$ or $34 \& 987$. Possible cubes are 27 (no way it can fit with 7 in 987), 64 (cannot link with 21 or 34 in 3a/4d), 125, 216, 512. Since each of the valid cubes involve $1 \& 2$ this rules out 21 being present and confirms the two Fibonacci as 34\&987.

If $1 \mathrm{dn}=987,3 \mathrm{ac}=83,4 \mathrm{dn}=34$ and there is no category for 5ac starting 74 and ending $1,2,5,6$. If $5 \mathrm{ac}=987,3 \mathrm{ac}=34,4 \mathrm{dn}=48$ with no valid category. 987 cannot intersect the cube so must appear opposite it. If $1 \mathrm{ac}=987,5 \mathrm{ac}$ is one of $125,216,512$ and 4 dn cannot be 34 hence $3 \mathrm{ac}=34$. 1 dn is not a square, cube, Fibonacci and the only prime is 937 requiring a duplicate 7 . This confirms $2 \mathrm{dn}=987$.

1 dn is one of $125,216,512$ so 3 ac cannot be 34 , therefore $4 \mathrm{dn}=34$. 1 ac must be the square with candidates 169,289 (duplicate 8), 529 or 729 (duplicate 2). 1dn=125 with $3 \mathrm{ac}=23$ and $5 \mathrm{ac}=547$ the required primes.

Recycling by Oyler

3	0	1	0	3	
6	9	8	9	7	
7	7	8	1	5	
4	${ }^{12} 7$	${ }^{13} 7$	14	2	
8	${ }^{7}$	5	0	${ }^{8} 9$	
${ }^{20} 6$		2			

9 ac ends in 5 so 10 dn is 529 or 576 . The latter is eliminated from $15 \mathrm{ac} / 11 \mathrm{dn}$ thus 10 dn is 529 with 15 ac 21 . The range for 8 ac is $70-78$ so 11 dn is 11 with 8 ac 77 . Hence 18 ac is 98 . Consider $19 \mathrm{dn} / 4 \mathrm{ac} / 11 \mathrm{dn} / 1 \mathrm{dn}$ forces $19 \mathrm{dn}=80,4 \mathrm{ac}=69$ and 14 dn $=100.3 \mathrm{ac} / 3 \mathrm{dn} / 8 \mathrm{dn}$, as 8 dn starts with a $73 \mathrm{ac} / \mathrm{dn}$ starts with a 1,2 or 3 . The minimum for 3 ac is 30 , thus $3 \mathrm{ac}=30$, $3 \mathrm{dn}=37,8 \mathrm{dn}=74,20 \mathrm{ac}=60$. By calculation $21 \mathrm{ac}=2060$. From 16ac clue 13dn must end in 5 and is 75.5 dn is 971 or 977 , so 17 dn must be a factor of 80 that's greater than 30 so is 40 . This yields 5 dn 977 and 12ac 771. 1ac is 3010 by calculation so 1 dn is 36 . 2 dn is 141 or 188 . The 16 ac clue is now $? 450=6 \mathrm{ac}-520$ which gives 6 ac as 4970 or 8970 . Only the latter is the product of 5 distinct primes. 8ac is 8970 and 16ac is 8450 . 7 dn is 91 and 9 ac is 815 .

This puzzle used the same grid and grid fill as Tally Ho which appeared in CQ4 but with number definition as opposed to letter/number assignment clues, hence the title. Incredibly one solver spotted this.

Sequence by Czecker

The sequence contains six two-digit terms. A and B are entries, so are both at least 10 . If $A=10+a$ and $B=10+b$, then the sixth term is $80+3 a+5 b<100$, so there are 15
possibilities for A and B. Only the sequence that begins 11,13 ; and the one that begins 13,12; have four-digits numbers that fit at 4 across and 6 across together with 4 down and 5 down.
The one that begins 11,13 has 4 across $=2851$ and 6 across $=4613$. Then 3 down is *516, and no four-digit square ends *516.
The sequence begins 13,12 . 2 down is $2187=3^{7}$ and 3 down is 1089 .

A6 \& A15 $=$ Cubes $\Rightarrow\{\mathrm{A} 6, \mathrm{~A} 15\}=\{1331,1728\} . \mathrm{D} 3=$ Square $\Rightarrow \mathbf{A 6}=\mathbf{1 7 2 8}, \mathrm{A} 15=\mathbf{1 3 3 1}, \mathrm{D} 3$ = 352836
Consider D10 = Square. Consider A1, D2 \Rightarrow A1 = 2916, D2 = $\mathbf{1 6 1 7}$
Consider A19, D16. Consider A7 = Triangular, D4 = Picture cards, A3 = Same suit
Consider A13 $=$ Triangular. Consider A5 $=$ Sum of face values $=5$.
Consider D1 $=$ Sum of face values $=11$. Consider A17 $=$ Sum of face values $=12$
Consider D14 $=$ Sum of face values $=9$. Consider D8 $=$ Sum of face values $=19$
Consider A11 = Same suit \& D12. Consider A9 = Same suit, D5

